
KSD-TH-71-150 

C 
O 

2 

F-s 

KD ACCKS/ON. LIST T«' Call No. 

Copy No. 
of 

_cys. 

saeyrac 

KD RECORD COPY 
RETURN TO 

L^NICAL .NFORMATlOftl DIVISION 
''•13 12.10 

Technical Note 1971-20 

Stability of Two-Dimensional 
Recursive Filters 

T. S. Huang 

2 June 1971 

Prepared under Electronic Systems Division Contract F19628-70-C-0230 by 

Lincoln Laboratory 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY s 

Lexington, Massachusetts 

/\D?Z?'-H 



Approved for public release; distribution unlimited. 



MASSACHUSETTS  INSTITUTE  OF   TECHNOLOGY 

LINCOLN   LABORATORY 

STABILITY OF TWO-DIMENSIONAL RECURSIVE  FILTERS 

T. S.  HUANG 

Consultant, Group 64 

TECHNICAL NOTE  1971-20 

2 JUNE  1971 

Approved for public release; distribution unlimited. 

LEXINGTON MASSACHUSETTS 



The work reported in this document was performed at Lincoln Laboratory, a center 
for research operated by Massachusetts Institute of Technology, with the support 
of the Department of the Air Force under Contract F19628-70-C-0230. 

This report may be reproduced to satisfy   needs of  U. S. Government agencies. 

U 



ABSTRACT 

We discuss some aspects of the stability problem in two- 

dimensional recursive filtering.    In particular, we derive a 

simplified version of a stability theorem due to Shanks and show 

that it is equivalent to some results of Ansell.   We also give several 

examples of stability tests and pose a few unsolved problems. 
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STABILITY OF TWO-DIMENSIONAL RECURSIVE FILTERS 

I.        Introduction 

In digital image processing, we often want to do linear filtering.   The use of 

recursive instead of non-recursive filters has the potential of saving computation time. 

A two-dimensional digital recursive filter is characterized by the two-dimensional 

z-transform £ ^, m       n 2 2      a       z,     z„ 
n      -n      mn    1       ^ II/ \ m=U    n-U ,., H(z,, z0) =      (1) 1      2 p        q £        2,       , m     n 2        2       b       z,     z,, 

m=0    n=0 

where a       and b       are constants,  and without loss of generality we can set b      =1. mn mn ° J oo 

The degrees of the numerator and the denominator polynomials do not have to be equal, 

since some of the coefficients a       and b       can be zero.    The variables z, and z„ 
mn mn 1 2 

are defined as 
-s A 

z    = e 

-s2B <2> 
Z2=e 

where s. and s    are respectively the horizontal and vertical complex spatial frequency 

variables and A and B are constants (sampling periods in the horizontal and vertical 

directions, respectively). 

Let f(m,n) andg(m,n) be the input and output, respectively of the filter.   Then 

the spatial-domain difference equation corresponding to Eq.  (1) is 
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Fig.  1.   Four directions of recursion. 
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Fig. 2.    Initial conditions for a casual n 
filter. 



p     q p     q 
2        2b      g (M-m, N-n) = 2        S     a       f(M-m.N-n)        (3) 

n        n      mn6 v r.     _r>     rnn /        \ / m=0    n=0 m=0  n=0 

We can express g (M,N) in terms of the rest, and thus obtain a recursive filter which 

recurses in the (+m,+n) direction.    We can also express g (M-p,N-q) in terms of the 

rest, and obtain a recursive filter which recurses in the (-m, -n) direction,   Similarly, 

we can get from Eq.  (3) recursive filters recursing in the (+m, -n) and the (-m,+n) 

directions.   See Fig.  1.   We shall call the recursive filter that recurses in the (+m, 

+n) direction causal.   Thus, the z-transform of Eq. (1) can be associated with four 

different recursive filters.    However, unless otherwise specified, we shall associate 

it with the causal one. 

To start recursing, we need initial conditions.   For the causal filter, we need 

to know the values of the output g in the shaded region in Fig.  2. 

There are two major problems in the design of a recursive filter:   approximation 

and stability.   The approximation problem consists of determining the coefficients 

a       and b       in Eq.  (1) so that H(e ^     , e J    ) approximates a given frequency response 

H.(ju, jv), where u and v are respectively the horizontal and vertical spatial frequencies. 

In order for the resulting filter H(z., z2) to be useful, we have to require that it be 

stable,  i.e. ,  if we expand H(z., z„) into a power series 

CO GO 

H(z., z9) = 2        2 h       z•   z" (4) 
1      •*        _n        n        mn    12 v 

m=0   n=0 



00 00 

2 
m=0 

2 
n=0 

1 h 1    mn 

the coefficients, h      , which is the impulse response of the filter, should satisfy 
ran ' 

00 

<00 (5) 

If the filter is unstable, any noise (including the roundoff errors in computation) will 

propagate through the output and possibly be amplified.   Furthermore,  in many important 

applications, such as inverse filtering for image restoration, the initial conditions 

are usually not known.   We, therefore, desire that the result of the recursive filtering 

be roughly independent of the initial conditions.   This will be true if the impulse 

response I h        I *s»0 for m, n > A, where A is a constant which is much smaller r '    mn ' 

than the linear dimensions of the input and output images.   Therefore,  in some 

cases,  stability itself is not sufficient; we require in addition that the impulse response 

die out fast enough. 

In this paper, we shall discuss some aspects of the stability problem of two- 

dimensional recursive filters.   In particular, we shall derive a simplified version 

cs st 

3,4 

1  2 
of Shanks stability theorem  '   , and show that it is equivalent to Ansell stability 

theorem 

II. Shanks Stability Theorem 

Both the theorems of Shanks and Ansell tell us stability conditions in the fre- 

quency domain.   In this section, we shall state and prove Shanks stability theorem 

and discuss its implications. 



a)   Statement of the Theorem 

Theorem 1 (Shanks) 

A causal recursive filter with the z-transform H(z  , z„) = A(z., z2)/B(z. ,z2), 

where A and B are polynomials in z   and z„,  is stable, if and only if there are no 

values of z, and z2 such that B(z  , z„) = 0 and | z1   | £ l and  | z„ | s 1. 

b)  Proof 

Let A(z., z2) »      » 
H(zl' z2> =  ~Wi z~T     =  2      2     hmn zr   Z2 (6) 

l      z u{zv z2)        m=Q n=Q     mn    i 

CO 00 

What we want to show is that 2        2       I h        I < oo if and only if H(z,, zn) is analytic 
m-U   n-U . 

in the region D =-{(z1> z2^; | z,  | sln |zo I s V* 

The "if" part:   If H(z,, z„) is analytic in D, we can find e •> 0 such that 

H(z., z2) is analytic in D. z|(z., z2)>     |z.   | <lH-en | z.? | <rl+eV, which 

implies that m     n 
7 

m    n      mn 2    2    h       z.     z2   is absolutely convergent in D.. 

Therefore    2    2   I h        I <oo. 
m   n    '    mn ' 

The "only if" part:   If 2    2   I h < oo, then by the M-test, 3        r m   n    '    mn ' } 

m     n 
2  2 h       z.     z2   is absolutely convergent in D, which implies in turn that H(z.,z2) 

is analytic in D. Q. E.D. 



c) Test Procedure 

To test stability using Shanks theorem is hard work.   One way, e.g.,  is to 

map the unit disk dj =( Zj,   | Zj | £ 1) in the z, -plane into the z2 -plane by the Implicit 

mapping relation B(z., z2) = 0.   The filter is stable if and only if the image of d. in 

the z2-plane does not overlap the unit disk d2 =  (z2» I ZJ fi l)-   Tnis is hard work, 

because for each particular value of z, = z. ed., we have to solve the equation 

B(z1 , zO - 0 for z2.   And we have to do that for all (in practice, a large number 

of points)in d,. 

d) An Implication 

We emphasize that Shanks theorem was stated for causal filters, that is, 

filters which recurse in the (+m,+n) direction.   Let us consider the filter associated 

with H(z., z2) = A(z., z2)/B(z1,z2) which recurses in the (-m, -n)direction.   We 

assume that the orders of A in both z. and z2 are smaller than the corresponding 

orders of B.   Then, the stability condition becomes:   The image of (z.,| zJs 1) in 

the z2-plane, according to B(z., z2) = 0, does not overlap (z„   |z? | ^  1.) 

This can be shown by expanding H(Zj, z2) in terms of z.    and z2 : 

A(z,,  z0) oo m . 
,„ N 

v 1      2        _   „ v      , 1        ^-m     -n .-,. 

Making the change of variables 

-1 
wl=zl 

w2=z2 
1 (8) 



We get ..    -1      -1. 
»/    -1        "1^        A(W1   'W2   } y     y    hl m      n 
H(W1   ' W2 > =   n/    -1       -L     =   m   5   hmn   Wl     W2 (9) 

B(w1   , w2 ) 

N0W A(w;1,  w,1) a     b      A! (wr  w2) 
' n i     -   W,    w9     —5—7 r— (10) 
0/     l      -1\ 1      2       B. (w., w„) B(w, , w„ ) 1 v   1       2' 

Where a and b are non-negative integers, and B,(w  .w•) = 0 if and only if 

B(w.   , w2    ) = 0.    Applying Shanks theorem to 

w,   w„   A. w,,w„ , 1      2      r   1     2' „ v 1         m     n .... 
—n—T r  =   2 2 h       w,    w0 (11) B (w., wj m n mn     12 v 

we know that 2    2   | h        | < » if and only if the image of (w.,   | w    | £ 1) in the 

w2 -plane, according to B,(w., w„) =0, does not overlap (w^;   | w.? | £ 1).   But 

w, = z.   , and wo = z9 •   ^° our assertion has been proved. 

Similarly, we can get the stability conditions for the filters associated with 

H(z., z2) that recurse in the (+m, -n) and the (-m,+n) directions.   We can easily 

convince ourselves that at most one of the four stability conditions, corresponding 

to the four recursing directions, can be satisfied.   Therefore, we have the following 

Theorem 2 

Among the four recursive filters we can associate with the z-transform of 

Eq.  (1), or equivalently the difference equation of Eq. (3), at most one can be stable. 



SINGULAR 

POINTS  OF 

z,-PLANE B(Z1( Zg) = 0 

or 

z2- PLANE 

Fig. 3.   The mapping z„ = f(z.). 



III. A Simplified Version of Shanks Theorem 

Shanks' result as stated in Theorem 1 is very tedious to apply.   We now 

show that his stability conditions can be simplified considerably. 

a)   The Result 

Theorem 3 

A causal filter with a z-transform H(z., z„) = A(z., z2)/B(z., z2), 

where A and B are polynomials,  is stable,  if and only if:   (1)  the map of 8d. = 

(z.; |z. | = 1) in the z2 -plane, according to B(z., z2) = 0,lies outside d2 = (z2; |zJ 

^ 1); and (2) no point in d. = (z.; |z. | s 1) maps into the point z2 = 0 by the relation 

B(z., z2) = 0. 

b)   Proof 

We want to establish that the stability conditions of Theorems 1 and 3 are 

equivalent.   That the stability conditions of Theorem 1 imply those of Theorem 3 

is obvious.   So we proceed to show the implication in the other direction. 

The two-variable polynomial B(z  , z2) = 0 defines an algebraic function 

z2 = f(z.).   We first modify the unit-circle contour in the z. -plane to exclude any 

singular points of f inside the contour, resulting in a modified contour 3d.' as shown 

in Fig. 3.   We use dj to denote the closed region enclosed by 8dj.    A point z. = z. 

is called a singular point of z2 = f(z.),  if B(z., z2) = 0, considered as an equation 

in z2, has multiple (finite or infinite) roots. 



According to the theory of algebraic functions, in dj, the function z2 - f(z.) 

has a number of branches, each of which is holomorphic. Therefore, from the max- 

imum-modulus theorem, the maximum of |f(zj| over dj occurs on8dj, and the min- 

imum of |f(z.)| over dj can occur in the interior only if the minimum is zero. How- 

ever, condition (2) of Theorem 3 says f(z ) is never zero in dj. Therefore, the min- 

imum of f(z.) occurs on 3dj, i.e. , 

[f(dp| ^min.   (f(8dj)| (12) 

which implies that:   if |f(8dj)| >1, then |f(dj)| > 1; i.e., to ensure that f(dj) lies 

outside the unit disk d„ = (z  , |  zj   £ 1), it is sufficient to ensure that f(8d'j) 

lies outside d2. 

We are almost there, but not quite.   What we really want to show is that: 

if |f(8dpi > 1, then |f(dx)| > 1, where d{ = (z,,   |zj £ 1) andfl'dj = (z.*,  IzJ = 1). 

Since the detour in 8dj can be any path leading from 8d. to the singular point, what 

is left to show is simply that |f(s)| > 1 where s is the singular point.   But since each 

branch of z2 = f(z,) is continuous at z. = s, and since |f(s+e eJ  ) | > 1 for arbitrary 

small e and any 0, we have |f(s) | >1.   Q. E.D. 

c)   Test Procedure 

To test stability using Theorem 3, we have to map 9d    = (z',   |z 1 [ = 1) into the 

z2 -plane according to B(z., z?) = 0, and see whether the image lies outside d2 = 

(z2',  |z2| s 1).   Also, we have to solve B(z.,0) = 0 to see whether there is any root 

with magnitude smaller than 1. 

10 



IV. Ansell Stability Theorem 

To test the stability of a two-dimensional recursive filter using Theorem 3 

is much simpler than using Shanks' original Theorem 1. However, the procedure 

is still infinite in the sense that in principle we have to map every point on the con- 

tinuum dd, into the z -plane. In this section, we show that Theorem 3 can be 

reduced to a result due to Ansell. We shall see that Ansell's result enables us to 

test stability in a finite number of steps - which, unforntunately, can still be very 

tedious. 

By making the change of variables: 
1-z 

Pl=TT^ <13a> 

and 
l-z2 

p2      l + z2 (13b) 

and let 
E (p,, P?) 

^v^'Tj^r <H) 

where E and F are polynomials in p. and p2-   We can restate Theorem 3 as: 

Theorem 4 (Ansell) 

The causal recursive filter H(z., z„) is stable,  if and only if:   (1) for 

all real finite w, the complex polynomial in p2> F(jw, p2), has no zeros in Re p2 sO; 

and (2) the real polynomial in p. F(p.,   1), has no zeros in Re p. ^ 0. 

3 
This theorem is essentially the same as Lemma 6 of Ansell   .   The nice thing 

about this theorem is that condition (1) can be tested using standard techniques of 

circuit theory  . 

11 



Theorem 5 (Ansell) 

Condition (1) of Theorem 4 is equivalent to the following:   Let us express 

F(jw, j°w), where w and ft are real, as 

F(jw,jft) = b (w) fln + b, (w) fin_1 + ... + b (w) 
0 i n 

+ j[ao(w)nn + ai (w)an_1 + ... +an(w)] (15) 

where a.(w) and b.(w) are real polynomials in w and either a (w) or b (w) is not 

identically zero.    Let C       (w) be defined as 

C =a   b   -a   b (16) r, s        r   s       s   r v 

for Osr,sin (using zero for a's and b's not present inF(jw, jfi)).   And let D(w) denote 

the n x n symmetrical polynomial matrix whose typical element D..(w) (1 s i, j sn) 

is the sum of all those C       (w) (Osr,ssn) for which both r i s 

s +r = 1 + j - 1 (17a) 

and 

s - r > | i - j | (17b) 

are satisfied.   Then, the n successive principal minors of D(w) must be positive for 

all real w. 

3 7 6 
This is part of Theorem II of Ansell  '   .   We note that Sturm's method   can 

be used to test whether each minor of D(w) is positive for all real w. 

12 



V. Examples 

We now give some examples illustrating the use of Theorem 3 and Theorems 

4 and 5.    Ideally, we would like to determine what relations the coefficients a., and 

b.. in Eq.  (1) must satisfy to ensure the stability of a causal recursive filter H(z.,z2). 

Unfortunately, this does not seem possible except for very simple filters. 

a)   First-order Filters 

Let us consider the first-order filter 

H(z      z )   =   I  (18) 
n\zv z2; i + az   +bz2 

where a and b are constants.    In this simple case, we can easily determine the 

stability conditions in terms of a and b using Theorem 1. 

Let 

B(z., z2) = 1 + az. + bz2 = 0 

we have 

Z2 = -E  "E   zl (19) 

Therefore, B = 0 maps the unit disk in the z. -plane into a disk in the z2 -plane 

with center at z2 =    T-    and radius | T- |.   This image will not overlap the unit disk 

in the z2 -plane,  if and only if 

I B I " I J I > i (20) 
or equivalently, 

| a | + | b | <1 (21) 

13 



We now try to establish the same result by using Theorems 4 and 5.    Making 

the change of variables according to Eqs. (13), we get 

E(pr p2) 1+P1+P2
+P1P2 (22) 

H(zl' z2> =  F(pj, p2)     = (1+a+b) + (1-a+b) p[+ (1+a-b) p2 +(1-a-b) Pl p2 

Condition (2) of Theorem 4 dictates that F(p., 1) = 2(l+a) + 2 (1-a) Pj = 0 has 

not root in Re p. £ 0.   Therefore 

| a | < 1 (23) 

Now we tackle condition (1) of Theorem 4 with the help of Theorem 5.   We have 

F(jw,jfl) = (1+a+b) - (1-a-b) wfl +jf*(l-a+b) w + (1+a-b) fll 

and we want 

Cn . = (1+a-b) (1+a+b) + (1-a+b) (1-a-b) w2 > 0, 
| (24) 

for all real w 

Let A. = 1+a-b, A2 = 1+a+b, A., = 1-a+b, and A4 = 1-a-b.   Then the inequality (24) 

is valid if either of the following four conditions is satisfied:   (i) A. > 0, A2 > 0, 

A3>0, A4>0.    (ii)   Ax >0, A2>0, A3   <0, A4 <0.    (iii) Aj < 0, A2 < 0, A3 > 0, 

A^ > 0.   (iv)  A. < 0, A„ < 0, A   <0, A4 < 0.    It is easy to show that (i) is equivalent 

to the inequality (21), while (ii) - (iv) are incompatible with the inequality (23). 

b)   A Special Class of Second-order Filters 

We next consider the filter 

H(zr z2) = 1+aZi+bZ2+CZi Z2 (25) 

14 



which we shall call a bilinear filter.   We first establish stability conditions in terms 

of the coefficients a, b, and c, using Theorem 3. 

Let 

B(z  , z2) = l+az.+bz^+cz,  z~ = 0 

We have 
1+az 

Z2 =   M^- <26) 

which is a bilinear transformation mapping circles into circles.   The image of the 

unit circle 8d, = (z.;   |z. | = 1) in the z„ -plane is then a circle.    From Eq. (26), 

the center of this image circle is on the real-axis, and it intersects the real-axis 

at 
1 -a , 1+a 

Z2 = "Fc-   andz2 = --&4^ 

It is easy to see that condition (1) of Theorem 3 is satisfied if 

1-a iei>[ <27a> 
and 

I & I > » <27b> 
Finally, condition (2) of Theorem 3 is equivalent to 

| a | < 1 (27c) 

The conditions (27) agree with those of Shanks  . 

We now try to establish the stability conditions using Theorems 4 and 5. 

Making the change of variables according to Eqs. (13), we get 

E(p1,p2) 1+P1+P2+P1P2 
H(zl' z2) = F(prp2) B14B2p1+B3p2+B4P1p2 

(28) 

15 



where 

B, = 1+a+b+c 

B2 = 1-a+b-c 

B3 = 1+a-b-c 

B4 = 1-a-b+c (29) 

For condition (2) of Theorem 4, we form 

F(pr  I) =2(1-1*)+2(1-a)pj =0 

whence Re p. > 0 means 

| a | < 1 (30) 

Now we tackle condition (1) of Theorem 4.   We have 

F(jw, j«) = Bj - B4 wft + j[(B2w + B3^) 

According to Theorem 5, we want 

C0,l=B3Bl+B2B4w2>0 

for all real w (31) 

which is valid if either of the following four conditions is satisfied:   (i) B, > 0, 

B3 > 0, B2 > 0, B4 > 0.    (ii)   Bl > 0, Bg >0, B2< 0, B4 <0.   (iii) By < 0, B3 <0, 

B2 > 0, B4 > 0.    (iv) Bj < 0, B3 <0, B2 < 0, B4 < 0. 

It is easy to show that (i) is equivalent to 

|a+b |  -1 < c < 1 - |a-b | (32) 

and (ii) - (iv) are ruled out by the inequality (30).   It can readily be verified that 

(32) is equivalent to (27). 

16 



c)   A Numerical Example 

Unfortunately, filters described by Eqs.  (18) and (25) are the only types for 

which we were able to derive stability conditions in terms of the coefficients in the 

z-transforms.   For more complicated filters, the application of Theorem 3 becomes 

unwieldy.    However, for any filter with numerical coefficients, we can always apply 

Theorems 4 and 5 and determine whether it is stable or not in a finite number of 

steps.   We illustrate by an example. 

Consider the filter 

„, v 1  (33) 

2 zlIz24Zl  Z2     4Z1      4   Z2 

Making the change of variables according to Eqs.  (13), and proceeding as 

before, we find that 

F(prl) = 3Pl
2 + 6Pl+7 

whose zeros have negative real parts.   Therefore, condition (2) of Theorem 4 is 

satisfied. 

For condition (1) of Theorem 4, we form 

_       ,.      3     4     3      2     15 
C0,1(W) = 4 w    -1  w    "T 

which can certainly be negative for some real values of w.   Therefore, condition (1) 

is violated.    The filter of Eq.  (33) is unstable. 

17 



VI.        Concluding Remarks 

We have discussed in this paper how to test the stability of two-dimensional 

recursive filters in the frequency domain.   In conclusion, we would like to point 

out that what we have discussed is only part of the stability problem.   Furthermore, 

it is not the most important part.   The more important questions we want to ask are: 

(1) How do we design filters that are gauranteed to be stable?  and (2) If a given 

filter is unstable, how do we stabilize it without changing its frequency response? 

One approach to attacking question (1) is to study what types of frequency 

responses we can get from classes of simple filters whose stability we know how 

to control. 

2 
With respect to question (2), we might mention a conjecture of Shanks  . 

Let H(z., z2) = 1/B(z., z2) be an unstable filter.   We first determine a least mean- 

square inverse of B(z.,  z2), which we call 

a b 
C(z., z0) = 2 _     2„   c       z.     z0 (34) 1      2'    m=0   n=0     mn    12 v    ' 

where a and b are positive integers. 

Let 

B(Zj, z2) C(z1> z2) = 1 + d1Q Zj + d j z2 + dn Zj   z2 ... 

Then among all polynomials of order (a, b), C is the least mean-square of B if the 

2 2 2 
coefficients of C are such that (d.~ + d^, + d,, + ...) is minimized.   We next 

determine a least mean-square inverse of C(z., z2) which we call B(z  , z2).   Then 

Shanks conjecture states that the filter H(z., z2) = 1/B(z  , z„) is stable and that 

the magnitude of the frequency response of H is approximately equal to that of H. 

18 



The approximation becomes better when we use larger values for a and b in Eq.  (34). 

8  9 
It was proven by Robinson  '    that a one-dimensional version of Shanks' procedure 

does yield stable (one-dimensional) filters.   However, whether the procedure yields 

stable filters in two dimensions is still an open question.    Also, no analysis is 

available on how close the magnitude of the frequency response of H is to that of H. 

We have yet another open question with respect to question (2).    In the one- 

dimensional case,  if we are doing non-real-time filtering, then we can always 

decompose an unstable filter with no poles on the unit circle into two stable ones 

recursing in opposite directions.   We associate the poles of the original filter outside 

the unit circle with a filter recursing in the positive direction, and the poles inside 

the unit circle with a filter recursing in the negative direction.    Is there an analogous 

procedure in two dimension?   It beats me. 

19 
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